Do we believe the Axiom of Choice ?
Continuing on my series of posts from Israel, I’d like to share some exciting puzzle that I heard today from Omer Tamuz. I’ve learned before about the Axiom of Choice in a Measure Theory class, but never saw a so striking and counter-intuitive application of it. Ok, you might say the Banach–Tarski paradox is a pehaps better example – but since it’s proof is so complicated, it is not as striking as seeing how a simple application of it can generate un-intuitive results. First, let me present two puzzles:
Puzzle #0: There are
people in a line, and each has a
number on his hat. Each player can look to the numbers of the players in front of him. So, if
is the number of player
, then player
knows
. Now, from
the players will say his own number. Is there a protocol such that players
will get their own number right? (Notice that they hear what the players before him said).
Puzzle #1: Consider the same puzzle with an infinite number of players. I.e. there are
and player
knows
for all
. Show a protocol for all players, except the first to get the answer right?
Puzzle #2: Still the same setting, but now players don’t hear what the previous player said. Is there a protocol such that only a finite number of players get it wrong ? (notice that it needs to be finite, not bounded).
Puzzle #0 is very easy and the answer is simply parity check. Player  could  simply declares 
 where 
 stands for XOR. Now, player 
 can for example reconstruct 
 by 
. Now, player 
 can do the same computation and figure out 
. Now, he can calculate 
 and so on… When we move to an infinite number of players, however, we can’t do that anymore because taking the XOR of an infinite number of bits is not well defined. However, we can still can solve Puzzles #1 and #2 if we believe and are willing to accept the Axiom of Choice.
Axiom of Choice: Given a family of sets
there is a set
such that
, i.e. a set that takes a representative from each element in the family.
It is used, for example to show that there is no measure  that is shift invariant (say under addition modulo 
) and 
. The proof goes the following way: define the following equivalence relation on 
: 
 if 
. Now, consider the family of all the equivalence classes and invoke the Axiom of Choice. Let 
 be the set obtained. Now, we can write the interval as a disjoint union:
where all operations are modulo  and 
. Since it is an enumerable union, if such a measure existed, then: 
 which is either 
 if 
 or 
 if 
.
This is kinda surprising, but more surprising is how we can use the exact same technique to solve the puzzles: first, let’s solve Puzzle #2: let  be the set of all infinite 
-strings and consider the equivalence relation on 
 such that 
 if the strings differ in a finite number of positions. Now, invoke the axiom of choice in the equivalence classes and let 
 be the set of representatives. Now, if 
 is the set of all strings with finite number of 
‘s and 
 the operation such that 
 if 
. We can therefore write:
Now, a protocol the players could use is to look ahead and since they are seeing an infinite number of bits, they can figure out which equivalence class from  they the entire string is. Now, they take 
 the representative of this class and guess 
. Notice that 
 will differ from the real string by at most a finite number of bits.
Now, to solve puzzle #1, the player  simply looks at 
 and figure out the equivalence class he is and let 
 be the representative of this class. Now, since 
 and 
 differ by a finite number of bits, he can simply calculate XOR of 
 and 
 (now, since it is a finite number of them, XOR is well defined) and announce it. With this trick, it just becomes like Puzzle #0.